Abstract

For more than 50 years, an elegant energy gap (EG) law developed by Englman and Jortner [Mol. Phys. 18, 145 (1970)] has served as a key theory to understand and model the nearly exponential dependence of nonradiative transition rates on the difference of energy between the initial and final states. This work revisits the theory, clarifies the key assumptions involved in the rate expression, and provides a generalization for the cases where the effects of temperature dependence and low-frequency modes cannot be ignored. For a specific example where the low-frequency vibrational and/or solvation responses can be modeled as an Ohmic spectral density, a simple generalization of the EG law is provided. Test calculations demonstrate that this generalized EG law brings significant improvement over the original EG law. Both the original and generalized EG laws are also compared with the stationary phase approximations developed for electron transfer theory, which suggests the possibility of a simple interpolation formula valid for any value of EG.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call