Abstract

We propose the use of a new false discovery rate (FDR) controlling procedure as a model selection penalized method, and compare its performance to that of other penalized methods over a wide range of realistic settings: nonorthogonal design matrices, moderate and large pool of explanatory variables, and both sparse and nonsparse models, in the sense that they may include a small and large fraction of the potential variables (and even all). The comparison is done by a comprehensive simulation study, using a quantitative framework for performance comparisons in the form of empirical minimaxity relative to a “random oracle”: the oracle model selection performance on data dependent forward selected family of potential models. We show that FDR based procedures have good performance, and in particular the newly proposed method, emerges as having empirical minimax performance. Interestingly, using FDR level of 0.05 is a global best.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.