Abstract

We present a simple formula for analyzing factors that govern porosity of magma in dome-forming eruptions. The formula is based on a 1-dimensional steady conduit flow model with vertical gas escape, and provides the value of the porosity as a function of magma flow rate, magma properties (viscosity and permeability), and pressure. The porosity for a given pressure depends on two non-dimensional numbers ε and θ. The parameter ε represents the ratio of wall friction force to liquid-gas interaction force, and is proportional to the magma viscosity. The parameter θ represents the ratio of gravitational load to liquid-gas interaction force and is inversely proportional to the magma flow rate. Gas escape is promoted and porosity decreases with increasing ε or θ. From the possible ranges of ε and θ for typical magmatic conditions, it is inferred that the porosity is primarily determined by ε at the atmospheric pressure (near the surface), and by θ at higher pressures (in the subsurface region inside the conduit). The porosity near the surface approaches 0 owing to high magma viscosity regardless of the magnitude of the magma flow rate, whereas the subsurface porosity increases to more than 0.5 with increasing magma flow rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.