Abstract

A fiber-optic relative humidity sensor with an extrinsic micro Fabry–Perot cavity constructed with a thin layer of cellulose acetate butyrate coated on a fiber end is presented. Its operational principle is based on the relative-humidity-dependent wavelength shift of the interference fringes formed by Fresnel reflections from both interfaces of the thin film. Both the experimental and theoretical analyses are investigated in detail. The experimental data for relative humidity ranging from 8.8% to 88.1% are measured in the both humidification and dehumidification processes, which fits the linear equation very well with a value of R2=0.9946. As observed, it shows a high sensitivity of 0.307nm/%RH with a high resolution of 0.06%. The time-dependent response of the sensor is estimated. The long term stability of the sensor is also addressed with high precision of ±0.03% over 100min. The proposed relative humidity sensor has a simple, solid, and compact structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.