Abstract

In this work, an electrochemical method was developed for rapid and sensitive detection of hydroxychloroquine (HCQ), an ineffective candidate drug for COVID-19 treatment however widely consumed during the pandemic, in aqueous samples using a multi-walled carbon nanotubes (MWCNT) film produced through the interfacial method on the indium tin oxide electrode (ITO). According to Raman spectroscopy, X-ray diffraction, UV–vis spectroscopy, Energy-dispersive X-ray spectroscopy, scanning electron microscopy, and atomic force microscopy, the interfacial method produces homogeneous thin films of carbon nanotubes on the substrate surface, which keep connected to the surface forming a three-dimensional microporous structure. The electrochemical behavior and oxidation kinetics of HCQ were also investigated in the MWCNT film. The sensor showed a 7 times higher oxidation current for (69.88 μA) for HCQ than the ITO electrode (9.33 μA) due to the electrocatalytic properties MWCNTs. The ITO-modified electrode was assembled on a portable 3D-printed batch-injection cell for the amperometric detection of HCQ. The oxidation peak current of HCQ is linearly proportional to the concentrations of HCQ ranging from 1.0 to 100.0 μmol L−1, with a limit of detection of 0.27 μmol L−1. Water samples (river and tap water) were spiked with HCQ, without the need for dispendious pretreatment (except filtration), and analyzed by the portable system, revealing the detection of HCQ with the recovery of 92.0%–99.8%, which suggested the great potential for real environmental monitoring application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call