Abstract
A set of 96 open-cell foams with growing porosities (0.35–0.95) and growing pore nominal diameters (0.4–2.6mm) was artificially generated to firmly connect their normal spectral emittances to their textural features. This work is strictly focused on foams that are composed of opaque struts with optically smooth surfaces. To compute the normal spectral emittances, a Monte Carlo Ray Tracing code was carefully used through an indirect method based on Kirchhoff's laws. The Monte Carlo Ray Tracing code considers the complex refractive index of the solid phase constituting the struts foams. Particular attention is therefore paid to performing the calculation with absorption indices (0.5–8) that preserve the opacity of each strut. From a thorough analysis of the ray transport within all the foams, where the Representative Elementary Volumes used for computing the homogenized radiative properties were known beforehand, a general and simple law is established that connects the normal spectral emittance, on the one hand, and the open porosity and the complex index of refraction, on the other hand. In the field of the thermal conversion of solar energy, for example, the new law gives relevant insight on the radiative performance of highly porous foams that are virtually coated with materials that are known for possessing an undeniable spectral selectivity when they are shaped as dense samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Quantitative Spectroscopy and Radiative Transfer
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.