Abstract

Habitable Zone (HZ) is defined as a life existence area, where water at the surface of the terrestrial planet is in liquid phase. This is caused by the balance of flux from the host star and effective radiative cooling with greenhouse effect of the planet. However, the flux varies according to evolutional phase of the host star. So, a simple but newest HZ model considering stellar mass range from 0.08 to 4.00 M⊙ has been proposed. It studies both at zero-age main sequence (ZAMS) and terminal-age main sequence (TMS) phases to examine persistence of HZ. By the way, it discusses the case of the metallicity like the Sun. Actually, it is interesting to study a HZ model considering host stars with low metallicity. So, we examine the effect of metallicity, following the precedent simple model. In our analysis, metallicity affects little for HZ orbital range at ZAMS, while it affects clearly in case of TMS. Since the inner and outer HZ boundaries at TMS are shifted outward especially in the mass range from 1.5 to 2.0 M⊙, we find persistent HZ is allowed above about 1.8 M⊙. The age of the universe is 13.8 Gyr, which is comparable to main sequence life time of about 0.8 M⊙ for the low metallicity case. Then, the effect of metallicity to estimate HZ of low metallicity host stars is important for the mass range from 0.8 to 1.8 M⊙.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.