Abstract

AbstractCopulas are distributions with uniform marginals. Non‐parametric copula estimates may violate the uniformity condition in finite samples. We look at whether it is possible to obtain valid piecewise linear copula densities by triangulation. The copula property imposes strict constraints on design points, making an equi‐spaced grid a natural starting point. However, the mixed‐integer nature of the problem makes a pure triangulation approach impractical on fine grids. As an alternative, we study the ways of approximating copula densities with triangular functions which guarantees that the estimator is a valid copula density. The family of resulting estimators can be viewed as a non‐parametric MLE of B‐spline coefficients on possibly non‐equally spaced grids under simple linear constraints. As such, it can be easily solved using standard convex optimization tools and allows for a degree of localization. A simulation study shows an attractive performance of the estimator in small samples and compares it with some of the leading alternatives. We demonstrate empirical relevance of our approach using three applications. In the first application, we investigate how the body mass index of children depends on that of parents. In the second application, we construct a bivariate copula underlying the Gibson paradox from macroeconomics. In the third application, we show the benefit of using our approach in testing the null of independence against the alternative of an arbitrary dependence pattern.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.