Abstract

An electrochemical immunosensor for the accurate detection of cat neutrophil gelatinase-associated lipocalin (NGAL) in urine samples based on an electrode with a monolayer of gold nanoparticles (AuNPs) was proposed in this study. To fabricate the sensing electrode, a nickel mold with concave micron hemisphere array was prepared and then used to transfer the micron hemispherical structure onto a polyethylene terephthalate (PET) film using the hot embossing technique. A gold thin film was sputtered onto the micron hemispherical structure array, after which 1,6-hexanedithol and AuNPs were uniformly deposited on the PET membrane to form a sensing electrode. The NGAL concentrations were measured by electrochemical impedance spectroscopy after attaching the anti-NGAL. Results revealed that the proposed sensing scheme exhibited a wide dynamic detection range from 1 to 100 ng/mL, which is far enough to distinguish the healthy (NGAL concentration <10 ng/mL) from the damaged kidney. A low limit of detection and high sensitivity of 0.47 ng/mL and 10261.8 Ω ng−1mL, respectively, were also measured. After performing real sample detection using urine samples from cats collected at a veterinary hospital, the results confirmed that the proposed NGAL detection approach in this research could accurately detect the concentration of NGAL in cat urine samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call