Abstract

Supercapacitors are continuously gaining popularity in the market because of their powerful ultrafast charging ability, yet their energy is still low while contrasting with batteries. In most cases, utilization of redox additive materials (either by decoration or composite creation) and the redox response in the electrolyte itself are some of the strategies for improving the poor energy density of supercapacitors. Herein, we present, a facile, fast and economical one-pot microwave-assisted synthesis, characterization and supercapacitor application of nitrogen and sulfur co-doped graphene (NSG). The characterization result shows good exfoliation and a superior amount of heteroatoms content (14.9% of Nitrogen and 4.3% of Sulfur) in the graphene. The 1:1.5NSG shows a maximum specific capacitance of 310 F/g in two electrodes symmetric configuration using 1 M H2SO4 electrolyte. In addition, the device fabrication shows a high specific capacitance of 226 F/g and 150 F/g in non-aqueous organic and ionic liquid electrolytes with an energy density of 31 Wh/kg and 32 Wh/kg, respectively. In redox additive 0.015 M HQ in H2SO4 electrolyte, the supercapacitor device exhibits enhanced specific capacitance (667 F/g) with maximum energy density of 59 Wh/kg, which is very high and comparable to lithium-ion batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.