Abstract

Dermal exposure is one of the main ways of human body exposure to atmospheric contaminants such as polycyclic aromatic hydrocarbons (PAHs). The skin type significantly affects the skin adsorption of contaminants. However, this is commonly ignored in assessing the dermal exposure based on the atmospheric concentrations of contaminants. In this study, a simulation device suitable for human dermal pollutant exposure assessment was established, which used polyethylene balloons coated with different doses of glycerol trioleate to simulate oily skin, neutral skin, and dry skin type. The sampling effectiveness of the device was verified, and the device was applied to the skin exposure assessment of atmospheric PAHs at different scenarios. Kinetic experiments indicated a linear adsorption within 6h. The adsorption kinetic constants (k) of PAHs on the oily surface of the balloon were significantly higher than those on the dry surface, especially for PAHs with high ring numbers. Compared with the calculated skin adsorption based on atmospheric concentrations, the results of this simulation device can better simulate the skin adsorption of atmospheric contaminants on different skin types and in different scenarios. Based on the result of balloon sampling, the dermal exposure of PAH3 rings by oily skin inside the tunnel is up to 5.668ng/cm2/day, indicating a non-negligible health risk.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call