Abstract
We introduce a compact lenslet array principle that takes advantage of freeform optics to deploy a light distributor, beneficial for highly efficient, inexpensive, low energy consumption light-emitting diode (LED) lighting system. We outline here a simple strategy for designing the freeform lens that makes use of an array of the identical plano-convex lenslet. The light is redistributed from such lenslet, hinging on the principle of optical path length conservation, and then delivered to the receiver plane. The superimposing of such illumination area from every lenslet occurs on the receiver plane, in which the non-uniform illumination area located in the boundary should have the same dimension as the size of the freeform lenslet array. Such an area, insofar, is negligible due to their small size, which is the crux of our design, representing a large departure from the former implementations. Based on simulations that assess light performance, the proposed design exhibited the compatibility for multiple radiation geometries and off-axis lighting without concern for the initial radiation pattern of the source. As simulated, the LED light source integrated with such proposed freeform lenslet array revealed high luminous efficiency and uniformity within the illumination area of interest were above 70% and 85%, respectively. Such novel design was then experimentally demonstrated to possess a uniformity of 75% at hand, which was close to the simulation results. Also, proposed indoor lighting was implemented in comparison with the commercial LED downlight and LED panel, whereby the energy consumption, number of luminaires and illumination performance were assessed to show the advantage of our simplified model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.