Abstract
The liver and intestine contain a remarkably large portion of tissue-resident macrophage cells representing a phenotype that downregulates inflammation and initiates tissue repair. Here, liver and intestinal tissues obtained from neonatal mice were minced, enzymatically digested, and incubated in RPMI1640-based media. In a 2-wk culture, spherical floating cells emerged on a fibroblastic sheet. These cells showed phagocytic activity and F4/80+-CD11b+-CD206+-Arg1+-iNOS--CD209a- phenotype, suggesting that these cells are tissue-resident macrophages. These macrophages proliferated in the co-culture system in the presence of fibroblastic feeder cell layer and absence of supplemental cytokines; the co-culture system did not cause a significant change in the phenotype of cells grown in a 4-wk culture. On the feeder cells, macrophage density was approximately 1.5 × 104/cm2 and the doubling time was approximately 70h. Based on these observations, we present a simple method for the isolation and propagation of tissue-resident macrophages resembling M2 macrophage from neonatal mice, and this method provides a useful platform for in vitro studies of tissue-resident macrophages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.