Abstract

Molecular methods revealed that the majority of microbes in natural environments remains uncultivated. To fully understand the physiological and metabolic characteristics of microbes, however, culturing is still critical for microbial studies. Here, we used bacterial community analysis and four culture media, namely, traditional marine broth 2216 (MB), water extracted matter (WEM), methanol extracted matter (MEM), and starch casein agar (SCA), to investigate the diversity of cultivated bacteria in coastal sediments. A total of 1,036 isolates were obtained in pure culture, and they were classified into five groups, namely, Alphaproteobacteria (52.51%), Gammaproteobacteria (23.26%), Actinobacteria (13.32%), Firmicutes, and Bacteroidetes. Compared to other three media, WEM recovered a high diversity of actinobacteria (42 of 63 genotypes), with Micromonospora and Streptomyces as the most cultivated genera. Amplicon sequencing of the bacterial 16S ribosomal RNA (rRNA) gene V3–V4 fragment revealed eight dominant groups, Alphaproteobacteria (12.81%), Gammaproteobacteria (20.07%), Deltaproteobacteria (12.95%), Chloroflexi (13.09%), Bacteroidetes (8.28%), Actinobacteria (7.34%), Cyanobacteria (6.20%), and Acidobacteria (5.71%). The dominant members affiliated to Actinobacteria belonged to “Candidatus Actinomarinales,” “Candidatus Microtrichales,” and Nitriliruptorales. The cultivated actinobacteria accounted for a small proportion (<5%) compared to the actinobacterial community, which supported that the majority of actinobacteria are still waiting for cultivation. Our study concluded that WEM could be a useful and simple culture medium that enhanced the recovery of culturable actinobacteria from coastal sediments.

Highlights

  • Coastal sediments are inhabited by diverse and abundant microbes, which function as key drivers in biogeochemical processes of element cycling and organic matter decomposition (Bertics and Ziebis, 2009; Anantharaman et al, 2016; Dyksma et al, 2016)

  • Bringing bacteria into culture provides a platform for experimental testing of their physiological and metabolic function in element cycling compared to stable isotope probing (SIP) (Neufeld et al, 2007) or bioorthogonal non-canonical amino acid tagging (BONCAT; Hatzenpichler et al, 2016), which was mainly used in the study of uncultivated bacteria in situ

  • They were grouped into 153 genotypes defined at 99% sequence similarity, which showed a similar trend by using starch casein agar (SCA) medium, with a total of 301 isolates grouping into 150 genotypes (Supplementary Table 2)

Read more

Summary

Introduction

Coastal sediments are inhabited by diverse and abundant microbes, which function as key drivers in biogeochemical processes of element cycling and organic matter decomposition (Bertics and Ziebis, 2009; Anantharaman et al, 2016; Dyksma et al, 2016). They are a source for discovery of marine microbial-derived reference pharmaceuticals and industrial enzymes WMMC-414, showed potent efficacy against the multidrug-resistant fungi Candia auris (Zhang et al, 2020)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call