Abstract
A finite sequence of nonnegative integers is called graphic if the terms in the sequence can be realized as the degrees of vertices of a finite simple graph. We present two new characterizations of graphic sequences. The first of these is similar to a result of Havel-Hakimi, and the second equivalent to a result of Erdős & Gallai, thus providing a short proof of the latter result. We also show how some known results concerning degree sets and degree sequences follow from our results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.