Abstract
Difficulties in making accurate, ecosystem-level predictions of environmental effects of chemicals, mixtures, and effluents based solely on the results of tests on single species have necessitated the development of more environmentally realistic, predictive testing methods. This paper describes a multispecies, community-level toxicity test based on the colonization of artificial substrates by microbial species. Tests examined the colonization of initially barren polyurethane foam artificial substrates by Protozoa from a species source colonized in a natural system. Differences in colonization were examined in microecosystems amended with low levels of cadmium, a very toxic heavy metal, and TFM, an organic biocide used against larval sea lamprey. Tests examined differences in colonization over 28 days. For cadmium, effect levels were estimated to be near 1 μg 1(-1), in the low range of effect levels determined from chronic single species tests. For TFM, effect levels were estimated to be between 1 and 10 ppm, overlapping the concentrations used in environmental applications. The colonization response, which depends on naked microbial cells reproducing and migrating through toxicant amended water to new substrates, is very sensitive. Tests based on colonization can be adapted to use species from a target receiving system or can use species from a designated natural source. Field validation of these tests can employ nearly identical methods to those used in laboratory studies to assess the accuracy of predictions based on test system data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.