Abstract

For autonomous legged robots to be deployed in practical scenarios, they need to perform perception, motion planning, and locomotion control. Since robots have limited computing capabilities, it is important to realize locomotion control with simple controllers that have modest calculations. The goal of this paper is to create computational simple controllers for locomotion control that can free up computational resources for more demanding computational tasks, such as perception and motion planning. The controller consists of a leg scheduler for sequencing a trot gait with a fixed step time; a reference trajectory generator for the feet in the Cartesian space, which is then mapped to the joint space using an analytical inverse; and a joint controller using a combination of feedforward torques based on static equilibrium and feedback torque. The resulting controller enables velocity command following in the forward, sideways, and turning directions. With these three velocity command following-modes, a waypoint tracking controller is developed that can track a curve in global coordinates using feedback linearization. The command following and waypoint tracking controllers are demonstrated in simulation and on hardware.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.