Abstract

A simple geometrical and material nonlinear co-rotational planar beam element of field consistency is proposed. Herein the element which produces a local stiffness matrix of 3 by 3 other than 6 by 6 is developed. Material nonlinearity is taken into account on the base of yield function of element internal forces. By applying static equilibrium relationship of classic beam theory for the transferring of local element nodal force to global element nodal force, a new transformation matrix different from the nodal displacement transformation matrix is established. Although this results in an asymmetric global tangential stiffness matrix, the new transformation is simpler, and gives rise to field consistency and makes it possible to compute very large beam deflection without remeshing of the deformed structure. Computations of numerical example indicates that formulations for the nonlinear beam element are of validation and high efficiency

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.