Abstract
We introduce an upper semicontinuity condition concerning a not necessarily total preorder on a topological space, namely strong upper semicontinuity, and in this way we extend to the nontotal case the famous Rader’s theorem, which guarantees the existence of an upper semicontinuous order-preserving function for an upper semicontinuous total preorder on a second countable topological space. We show that Rader’s theorem is not generalizable if we adopt weaker upper semicontinuity conditions already introduced in the literature. We characterize the existence of an upper semicontinuous order-preserving function for all strongly upper semicontinuous preorders on a metrizable topological space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.