Abstract

The extraction of oriented contrast information by cortical simple cells is a fundamental step in early visual processing. The orientation selectivity originates at least partly from the input of lateral geniculate nuclei neurons with properly aligned receptive fields. In the present article, we investigate the feedforward interactions between on- and off-pathways. Based on physiological evidence we propose a push–pull model with dominating opponent inhibition (DOI). We show that the model can account for empirical data on simple cells, such as contrast-invariant orientation tuning, sharpening of orientation tuning with increasing inhibition, and strong response decrements to stimuli with luminance gradient reversal. With identical parameter settings, we apply the model for the processing of synthetic and real world images. We show that the model with DOI can robustly extract oriented contrast information from noisy input. More important, noise is adaptively suppressed, i.e. the model simple cells do not respond to homogeneous regions of different noise levels, while remaining sensitive to small contrast changes. The image processing results reveal a possible functional role of the strong inhibition as observed empirically, namely to adaptively suppress responses to noisy input.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.