Abstract

Symmetrical solid oxide fuel cell (SSOFC) is a simple and very promising cell for the rest of the most important commercialization process, which has been longing for stable and efficient symmetrical electrodes, from single-phase perovskites to reducible perovskites with in-situ exsolved metal nanoparticles. Herein, we present a new-type hybrid symmetrical electrode consisting of two different perovskite phases for SSOFC, which interact by dynamic compositional change and accordingly improve the electrochemical activity. Furthermore, a simple Ce-doping strategy is successfully developed to solve the redox stability issue of the hybrid symmetrical electrode for SSOFC. Typical Gd0.65Sr0.35Co0.25Fe0.75O3-δ (GSCF) consisting of a cubic perovskite phase and an orthorhombic perovskite phase is chosen as a proof-of-concept. Gd0.65Sr0.35(Co0.25Fe0.75)0.9Ce0.1O3-δ (Ce-GSCF) with an optimized Ce content of only 10% exhibit the enhanced chemical and thermal stability, consisting of a cubic perovskite phase, an orthorhombic perovskite phase and an in-situ exsolved cubic fluorite phase (GDC). More importantly, Ce-GSCF exhibits very high stability in H2 at 700 °C and a dramatical reduction of averaged thermal expansion coefficient from 19.5 × 10−6 K−1 to 16.4 × 10−6 K−1. The single-cell with Ce-GSCF hybrid symmetrical electrode reaches a high maximum power density of 224 mW/cm2 at 700 °C, and can work stably for 180 h without any degradation, indicating that the simple Ce-doping strategy is promising to improve stability of hybrid symmetrical electrode for SOFCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call