Abstract

Abstract To better forecast tropical cyclone (TC) intensity change and understand forecast uncertainty, it is critical to recognize the inherent limitations of forecast models. The distributions of intensity change for statistical–dynamical models are too narrow, and some intensity change forecasts are shown to have larger errors and biases than others. The Intensity Bias and Uncertainty Scheme (IBUS) is developed in an intensity change framework, which estimates the bias and the standard deviation of intensity forecast errors. The IBUS is developed and applied to the Decay Statistical Hurricane Intensity Prediction Scheme (DSHP), the Logistic Growth Equation Model (LGEM), and official National Hurricane Center (NHC) forecasts (OFCL) separately. The analysis uses DSHP, LGEM, and OFCL forecasts from 2010 to 2019 in both the Atlantic and east Pacific basins. Each IBUS contains both a bias correction and forecast uncertainty estimate that is tested on the training dataset and evaluated on the 2020 season. The IBUS is able to reduce intensity biases and improve forecast errors beyond 120 h in each model and basin relative to the original forecasts. The IBUS is also able to communicate forecast uncertainty that explains ∼7%–11% of forecast variance at 48 h for DSHP and LGEM in the Atlantic. Better performance is found in the east Pacific at 96 h where the IBUS explains up to 30% of the errors in DSHP and 14% of the errors for LGEM. The IBUS for OFCL explains 9%–13% of the 48-h forecast uncertainty in the Atlantic and east Pacific with up to 30% variance explained for east Pacific forecasts at 96 h. IBUS for OFCL has the capability to provide intensity forecast uncertainty similar to the “cone of uncertainty” for track forecasts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.