Abstract

Calcium bismuth niobate (CaBi2Nb2O9, CBN)-based ceramics are promising candidates for high temperature application, the electrical properties of which are commonly enhanced by complex ion substitution or texture processes. Here, we report that high piezoelectricity and high resistivity were achieved in Ca1-xBi2+xNb2O9 by constructing pseudo-tetragonal boundary through a simple strategy of Bi3+ self-doping. At the pseudo-tetragonal boundary, Ca0.96Bi2.04Nb2O9 ceramics maintain high Curie temperature Tc = 942 °C, and show high piezoelectric coefficient d33 = 15.1 pC/N and high resistivity ρdc = 2 × 106 Ω cm (@600 °C). It is proved that the good piezoelectric property mainly originates from the increase of domain density. In addition, Ca0.96Bi2.04Nb2O9 ceramics reveal good thermal depoling performance, remaining 90% of piezoelectricity after thermal depoling at 900 ℃, which is due to small thermal expansion and structural distortion. Our work provides a promising candidate for high temperature applications and an easy way to improve the performance of Aurivillius-type piezoelectric ceramics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.