Abstract
The collective risk model (CRM) for frequency and severity is an important tool for retail insurance ratemaking, natural disaster forecasting, as well as operational risk in banking regulation. This model, initially designed for cross-sectional data, has recently been adapted to a longitudinal context for both a priori and a posteriori ratemaking, through random effects specifications. However, the random effects are usually assumed to be static due to computational concerns, leading to predictive premiums that omit the seniority of the claims. In this paper, we propose a new CRM model with bivariate dynamic random effects processes. The model is based on Bayesian state-space models. It is associated with a simple predictive mean and closed form expression for the likelihood function, while also allowing for the dependence between the frequency and severity components. A real data application for auto insurance is proposed to show the performance of our method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.