Abstract
The problems of constructing tolerance intervals for the binomial and Poisson distributions are considered. Closed-form approximate equal-tailed tolerance intervals (that control percentages in both tails) are proposed for both distributions. Exact coverage probabilities and expected widths are evaluated for the proposed equal-tailed tolerance intervals and the existing intervals. Furthermore, an adjustment to the nominal confidence level is suggested so that an equal-tailed tolerance interval can be used as a tolerance interval which includes a specified proportion of the population, but does not necessarily control percentages in both tails. Comparison of such coverage-adjusted tolerance intervals with respect to coverage probabilities and expected widths indicates that the closed-form approximate tolerance intervals are comparable with others, and less conservative, with minimum coverage probabilities close to the nominal level in most cases. The approximate tolerance intervals are simple and easy to compute using a calculator, and they can be recommended for practical applications. The methods are illustrated using two practical examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.