Abstract

A low cost and indigenous experimental training, testing and process optimization setup of the heat pumping system is designed, developed and fabricated for the engineering students. The setup can be an effort to provide an indigenous option and import substitution for the local industries and academic institutions. The system uses difluoro-monochloromethane (CHCIF2) for the heat transport mechanism which has a heat of vaporization (ΔHvap) of 233.95 kJ/kg at the boiling point of -40oC. The control compression and expansion of the gas is performed by using the electro-mechanical controls and semi-hermetic compressor. The whole experimental setup is installed on the bench top table with vertical installation in open-air inside the laboratory. The change in pressure and temperature values at various stages of the setup is monitored by sensors, gauges, and visual displays. Physical states of the transport medium, i.e. liquid, vapors and super vapors are monitored by installing the transparent glass windows in the passage of transport medium. Hands-on experiments and procedures can be run on this setup in order to acquire deeper knowledge about design and process optimization of thermodynamical parameters, such as coefficient of performance (COP), Carnot cycle, dynamics of pressure-temperature imbalance during operating cycles and phase transformation of the transport medium under several operating conditions and parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.