Abstract
In this study, the artificial neural network (ANN) and response surface methodology (RSM) based on central composite design (CCD) were applied for modeling and optimization of the simultaneous ultrasound-assisted removal of quinoline yellow (QY) and eosin B (EB). The MWCNT-NH2 and its composites were prepared by sonochemistry method and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) analysis’s. Initial dyes concentrations, adsorbent mass, sonication time and pH contribution on QY and EB removal percentage were investigated by CCD and replication of experiments at conditions suggested by model has results which statistically are close to experimented data. The ultrasound irradiation is associated with raising mass transfer of process so that small amount of the adsorbent (0.025 g) is able to remove high percentage (88.00% and 91.00%) of QY and EB, respectively in short time (6.0 min) at pH = 6. Analysis of experimental data by conventional models is good indication of Langmuir efficiency for fitting and explanation of experimented data. The ANN based on the Levenberg–Marquardt algorithm (LMA) combined of linear transfer function at output layer and tangent sigmoid transfer function at hidden layer with 20 hidden neurons supply best operation conditions for good prediction of adsorption data. Accurate and efficient artificial neural network was obtained by changing the number of neurons in the hidden layer, while data was divided into training, test and validation sets which contained 70, 15 and 15% of data points respectively. The Average absolute deviation (AAD)% of a collection of 128 data points for MWCNT-NH2 and composites is 0.58%.for EB and 0.55 for YQ.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.