Abstract
We answer open questions of [Verbeek and Suri, SOCG'14] on the relationships between Gromov hyperbolicity and the optimal stretch of graph embeddings in Hyperbolic space. Then, based on the relationships between hyperbolicity and Cops and Robber games, we turn necessary conditions for a graph to be Cop-win into sufficient conditions for a graph to have a large hyperbolicity (and so, no low-stretch embedding in Hyperbolic space). In doing so we derive lower-bounds on the hyperbolicity in various graph classes – such as Cayley graphs, distance-regular graphs and generalized polygons, to name a few. It partly fills in a gap in the literature on Gromov hyperbolicity, for which few lower-bound techniques are known.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.