Abstract

Vinyl sulfone-substituted l-cysteine N-carboxyanhydride (VSCys-NCA) monomer was designed and developed to afford a novel and versatile family of vinyl sulfone (VS)-functionalized polypeptides, which further offer a facile access to functional polypeptide-based materials including glycopolypeptides, functional polypeptide coatings, and in situ forming polypeptide hydrogels through Michael-type addition chemistry under mild conditions. VSCys-NCA was obtained in two straightforward steps with a high overall yield of 76%. The copolymerization of γ-benzyl l-glutamate NCA (BLG-NCA), N-benzyloxycarbonyl-l-lysine NCA (ZLL-NCA), or l-leucine NCA (Leu-NCA) with VSCys-NCA using 1,1,1-trimethyl-N-2-propenylsilanamine (TMPS) as an initiator proceeded smoothly in DMF at 40 °C, yielding P(BLG-co-VSCys), P(ZLL-co-VSCys), or P(Leu-co-VSCys) with defined functionalities, controlled molecular weights, and moderate polydispersities (PDI = 1.15–1.50). The acidic deprotection of P(BLG-co-VSCys) and P(ZLL-co-VSCys) furnished water-soluble VS-functionalized poly(l-glutamic acid) (P(Glu-co-VSCys)) and VS-functionalized poly(l-lysine) (P(LL-co-VSCys)), respectively. These VS-functionalized polypeptides were amenable to direct, efficient, and selective postpolymerization modification with varying thiol-containing molecules such as 2-mercaptoethanol, 2-mercaptoethylamine hydrochloride, l-cysteine, and thiolated galactose providing functional polypeptides containing pendant hydroxyl, amine, amino acid, and saccharide, respectively. The contact angle and fluorescence measurements indicated that polymer coatings based on P(Leu-co-VSCys) allowed direct functionalization with thiol-containing molecules under aqueous conditions. Moreover, hydrogels formed in situ upon mixing aqueous solutions of P(Glu-co-VSCys) and thiolated glycol chitosan at 37 °C. These vinyl sulfone-functionalized polypeptides have opened a new avenue to a broad range of advanced polypeptide-based materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.