Abstract

Allosteric phosphodiesterase 4 (PDE4) inhibitors are highly sought after due to their important anti-inflammatory and anti-cancer therapeutic effects. We recently identified Eggmanone, an extraordinarily selective allosteric PDE4 inhibitor displaying favorable drug properties. However, a specific analytic method of Eggmanone in serum and its pharmacokinetics have not been reported yet. In this study, we developed a rapid and sensitive high performance liquid chromatography–mass spectrometric (HPLC–MS/MS) method to determine Eggmanone concentrations in rat plasma. This assay method was validated in terms of specificity, linearity, sensitivity, accuracy, precision, matrix effect, recovery and stability, and was applied to a pharmacokinetic study in rats following intravenous injection of Eggmanone at doses of 1 and 3 mg/kg. The lower limit of quantification (LLOQ) of this assay was 5 ng/mL and the linear calibration curve was acquired with R2 > 0.99 between 5 and 1000 ng/m. The intra-day and inter-day precision was evaluated with the coefficient of variations less than 11.09%, whereas the mean accuracy ranged from 98.38% to 105.13%. The assay method exhibited good recovery and negligible matrix effect. The samples were stable under all the experimental conditions. The plasma concentrations of Eggmanone were detected and quantified over 24 h with the terminal elimination half-live of 3.57 ± 1.80 h and 5.92 ± 3.34 h for the low dose (1 mg/kg) and high dose (3 mg/kg) respectively. In summary, the present method provides a robust, fast and sensitive analytical approach for quantification of Eggmanone in plasma and was successfully applied to a pharmacokinetic study in rats.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.