Abstract

Accurate prediction of liquid loading is of great importance for production optimisation in gas wells. In this paper, the authors present a simple and accurate empirical model based on attached-film reversal for predicting liquid-loading onset in vertical and horizontal gas wells. Unlike established and complicated analytical models based on force balance, this model is developed from the empirical flooding equation by matching the experimental data from previous studies. Further, this model adopts the Belfroid angle-correction term for horizontal gas wells. Compared with the traditional entrained-droplet models, this model considers the effect of pipe diameter and liquid velocity. This study investigated the effect of pressure on the predicted critical gas velocity and scaled up low pressure by comparing some other analytical models. This model was also validated against the experimental data and field data. Results show that the presented model is capable of accurately predicting liquid-loading onset in gas wells. [Received: December 4, 2018; Accepted: December 13, 2019]

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.