Abstract

Microfluidic impedance cytometry is emerging as a powerful label-free technique for the characterization of single biological cells. In order to increase the sensitivity and the specificity of the technique, suited digital signal processing methods are required to extract meaningful information from measured impedance data. In this study, a simple and robust event-detection algorithm for impedance cytometry is presented. Since a differential measuring scheme is generally adopted, the signal recorded when a cell passes through the sensing region of the device exhibits a typical odd-symmetric pattern. This feature is exploited twice by the proposed algorithm: first, a preliminary segmentation, based on the correlation of the data stream with the simplest odd-symmetric template, is performed; then, the quality of detected events is established by evaluating their E2O index, that is, a measure of the ratio between their even and odd parts. A thorough performance analysis is reported, showing the robustness of the algorithm with respect to parameter choice and noise level. In terms of sensitivity and positive predictive value, an overall performance of 94.9% and 98.5%, respectively, was achieved on two datasets relevant to microfluidic chips with very different characteristics, considering three noise levels. The present algorithm can foster the role of impedance cytometry in single-cell analysis, which is the new frontier in "Omics."

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.