Abstract

Abstract. A physics suite under development at NOAA's Global Systems Laboratory (GSL) includes the aerosol-aware double-moment Thompson–Eidhammer microphysics (TH-E MP) scheme. This microphysics scheme uses two aerosol variables (concentrations of water-friendly aerosol (WFA) and ice-friendly aerosol (IFA) numbers) to include interactions with some of the physical processes. In the original implementation, WFA and IFA depended on emissions derived from climatologies. In our approach, using the Common Community Physics Package (CCPP), we embedded modules of sea-salt emissions, dust emissions, and biomass-burning emissions, as well as of anthropogenic aerosol emissions, into the Unified Forecast System (UFS) to provide realistic aerosol emissions for these two variables. This represents a very simple approach with no additional tracer variables and therefore very limited additional computing cost. We then evaluated a comparison of simulations using the original TH-E MP approach, which derives the two aerosol variables using empirical emission formulas from climatologies (CTL) and simulations that use the online emissions (EXP). Aerosol optical depth (AOD) was derived from the two variables and appears quite realistic in the runs with online emissions when compared to analyzed fields. We found less resolved precipitation over Europe and North America from the EXP run, which represents an improvement compared to observations. Also interesting are moderately increased aerosol concentrations over the Southern Ocean from the EXP run, which invigorate the development of cloud water and enhance the resolved precipitation in those areas. This study shows that a more realistic representation of aerosol emissions may be useful when using double-moment microphysics schemes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.