Abstract

Although many dynamic models exist for the design and simulation of pressure swing adsorption (PSA) processes, these models involve the solution of a complex system of coupled partial differential equations. Process engineers need a simple, practical, and yet robust short-cut model that helps decide whether to implement a PSA system in a process flowsheet. This work presents a “virtual” moving bed modeling methodology that considers only mass and energy balances and adsorption isotherms to describe the cyclic steady state behavior of PSA systems. Similar to tray efficiencies in distillation calculations, adsorption efficiencies are further introduced to account for system “non-ideality.” A lab-scale air separation system is used to illustrate the application of this modeling methodology.Topical Heading: Process Systems Engineering

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call