Abstract

With the increase of obesity incidence, the development of antiobesity drugs has aroused extensive interest. In this study, a simple and portable personal glucose meter (PGM) method based on the lipase-mediated reaction combined with molecular docking was developed for the screening of lipase inhibitors. Lipase can catalyse the hydrolysis of 4-acetamidophenyl acetate to form acetaminophen, which can directly trigger the reduction of K3[Fe(CN)6] to K4[Fe(CN)6] in the glucose test strips and generate an electrical signal that can be detected by the PGM. When lipase inhibitors exist, the yield of acetaminophen will be reduced and results in a corresponding decrease of the PGM signal. Therefore, the activity of lipase can be measured by the PGM. After optimization of the experimental conditions, the inhibitory activity of fourteen small-molecule compounds and fifteen natural product extracts on lipase were evaluated by the developed PGM method. The results indicate that tannic acid, (-)-epigallocatechin gallate, (-)-epigallocatechin, (-)-epicatechin gallate, and epicatechin have good inhibitory effect on lipase (% of inhibition higher than 40.0%). Besides, the natural product extracts of Galla Chinensis, lemon, and Rhei Radix et Rhizoma have a good inhibitory effect on lipase with % of inhibition of (97.5 ± 0.6)%, (88.1 ± 0.7)%, and (79.1 ± 1.6)%, respectively. Finally, the binding sites and modes of six small-molecule compounds on lipase were investigated by the molecular docking study. The results show that the developed PGM method is an effective approach for the discovery of potential lipase inhibitors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call