Abstract

The determination of the contour length of DNA imaged by either electron microscopy or atomic force microscopy is frequently required for investigating the physical properties of nucleic acids. Nevertheless, these measurements are often carried out with methods that are not optimized for the curvilinear shape of DNA or are too complex to be of practical use. The aim of this study is to provide a method for the contour length measurements of DNA that is accurate, practical, and computationally simple. Computer simulated DNA fragments were used as experimental benchmarks in order to compute the coefficients a and b of the (n(e), n(o))-characterization [L(n(e),n(o)) = an(e) + bn(o)] so as to minimize the error of the measurements. The data show that, at variance with straight lines, a DNA length estimator depends on both the DNA flexibility and the image resolution, but it is independent of the DNA contour length. A table with DNA estimators to be used for length measurements of digitized contours obtained under commonly used imaging conditions is provided. Although the method has been developed using DNA as a benchmark, its applicability can be extended to other polymers as well as to other imaging techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.