Abstract

The major goal of this paper is to explore the effective state estimation algorithm for continuous time dynamic system under the lossy environment without increasing the complexity of hardware realization. Though the existing methods of state estimation of continuous time system provides effective estimation with data loss, the real time hardware realization is difficult due to the complexity and multiple processing. Kalman Filter and Particle Filer are fundamental algorithms for state estimation of any linear and non-linear system respectively, but both have its limitation. The approach adopted here, detect the expected state value and covariance, existed by random input at each stage and filtered the noisy measurement and replace it with predicted modified value for the effective state estimation. To demonstrate the performance of the results, the continuous time dynamics of position of the Aerial Vehicle is used with proposed algorithm under the lossy measurements scenario and compared with standard Kalman filter and smoothed filter. The results show that the proposed method can effectively estimate the position of Aerial Vehicle compared to standard Kalman and smoothed filter under the non-reliable sensor measurements with less hardware realization complexity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.