Abstract

BackgroundProtein structure comparison is a key problem in bioinformatics. There exist several methods for doing protein comparison, being the solution of the Maximum Contact Map Overlap problem (MAX-CMO) one of the alternatives available. Although this problem may be solved using exact algorithms, researchers require approximate algorithms that obtain good quality solutions using less computational resources than the formers.ResultsWe propose a variable neighborhood search metaheuristic for solving MAX-CMO. We analyze this strategy in two aspects: 1) from an optimization point of view the strategy is tested on two different datasets, obtaining an error of 3.5%(over 2702 pairs) and 1.7% (over 161 pairs) with respect to optimal values; thus leading to high accurate solutions in a simpler and less expensive way than exact algorithms; 2) in terms of protein structure classification, we conduct experiments on three datasets and show that is feasible to detect structural similarities at SCOP's family and CATH's architecture levels using normalized overlap values. Some limitations and the role of normalization are outlined for doing classification at SCOP's fold level.ConclusionWe designed, implemented and tested.a new tool for solving MAX-CMO, based on a well-known metaheuristic technique. The good balance between solution's quality and computational effort makes it a valuable tool. Moreover, to the best of our knowledge, this is the first time the MAX-CMO measure is tested at SCOP's fold and CATH's architecture levels with encouraging results.Software is available for download at .

Highlights

  • Protein structure comparison is a key problem in bioinformatics

  • Software is available for download at http://modo.ugr.es/jrgonzalez/msvns4maxcmo

  • We pursue two objectives: firstly, we propose a Variable Neighborhood Search (VNS) strategy for solving Maximum Contact Map Overlap problem (MAX-CMO) and we show that this strategy allows to obtain near optimal results using reduced computational resources and time

Read more

Summary

Introduction

Protein structure comparison is a key problem in bioinformatics. There exist several methods for doing protein comparison, being the solution of the Maximum Contact Map Overlap problem (MAX-CMO) one of the alternatives available. This problem may be solved using exact algorithms, researchers require approximate algorithms that obtain good quality solutions using less computational resources than the formers. We may cite the use of dynamic programming [4], comparisons of distance matrices [5], graph theory [6], geometrical hashing [7], principle component correlation analysis [8], local and global alignment [9], consensus shapes [10], consensus structures [11], Kolmogorov complexity [12], Fuzzy Contact Map Overlap [13], and comparing proteins as paths in 3D [14]. The interested reader in the field of structural bioinformatics may refer to [3,15,16] for updated information

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.