Abstract

In this paper, a simple and efficient numerical method to solve for the dynamic interaction of a high-speed train and railway structure during an earthquake is given. The motion of the train is modeled in multibody dynamics with nonlinear springs and dampers used to connect components. An efficient mechanical model for contact dynamics between the wheel and rail during an earthquake is presented. The railway structure is modeled with various finite elements. A nonlinear spring element based on a trilinear elastic-plastic material model is given for the concrete railway structure during an earthquake. A substructure model where a train runs repeatedly has been devised to obtain an approximated combined motion of the long train with many cars connected and the railway structure during an earthquake. A modal method has been developed to solve large-scale nonlinear equations of motion of the train and railway structure effectively. Based on the present method, a computer program DIASTARS for the dynamic interaction analysis of a Shinkansen train (high-speed train in Japan) and the railway structure during an earthquake has been developed. Numerical examples are demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.