Abstract

To adjust their development to the environment, plants rely on specific signals that travel from shoot to root and vice versa. Here we describe an efficient micrografting protocol for Nicotiana attenuata, a useful tool for identifying these signals and understanding their functions. Additionally we analyzed transcript accumulation profiles of scions and rootstocks of grafts performed with wild-type and stably transformed N. attenuata. Our results are consistent with the source-to-sink movement of an sRNA silencing signal.

Highlights

  • Many studies have shown that plants use long-distance or systemic signals to coordinate and adjust their growth

  • Grafting a JA biosynthesis mutant with a JA response mutant clearly showed that the production of jasmonic acid (JA) in damaged leaves and the perception of JA by distal leaves are necessary for inducing systemic responses [3]

  • Our data support the employment of N. attenuata grafts that combine WT genotype either to ov- or ir-transgenic lines, this latter only when used as rootstocks, given the altered transcript accumulation of WT roots promoted by silenced shoots

Read more

Summary

Introduction

Many studies have shown that plants use long-distance or systemic signals to coordinate and adjust their growth. These signals convey messages throughout the whole plant, from sensor to effector tissues or organs, and they seem to operate with great specificity which can depend on the message itself and on the spatial and temporal scales over which they act [1]. Plants are capable of priming defenses systemically in tissues that are distal to the sites of attack, suggesting that an herbivory alert signal is transmitted from attacked to unattacked leaves and roots [2]. Grafting has provided important insights into the study of these systemic wound signals in plants.

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.