Abstract

Accurate prediction of the intermolecular interaction energy (ΔEbind) has been a challenging and serious problem. Current in silico drug screening demands efficient and accurate evaluation of ΔEbind for ligands and their target proteins. It is desirable that ΔEbind including the dispersion interaction energy (Edisp) is calculated using a post-Hartree-Fock (HF) theory, such as the high-order coupled-cluster one, with a larger basis set. However, it remains computationally too expensive to apply such a one to large molecular systems. As another problem, it is necessary to consider the contribution of the basis set superposition error (BSSE) in calculation of ΔEbind. In Bioorg. Med. Chem. Lett. 2014 and 2015, we proposed simple and efficient corrections of dispersion and BSSE for the HF theory, which is not able to express the dispersion interaction energy correctly. The current Letter, as the final one in the series, aims to verify the HF theory enhanced by the dispersion correction (HF-Dtq) in the light of reproducibility of 'accurate' intermolecular ligand-protein interaction energy values, with comprehensive comparison with the MP2 and recently proposed various DFT-D theories. Taking ΔEbind calculated with the coupled-cluster theory coupled with a complete basis set as a reference, ΔEbind of over a hundred small sized noncovalent complexes as well as real ligand-protein complexes models was systematically examined in terms of accuracy and computational cost. The comprehensive comparison in the current work showed that HF-Dtq is a practical and reliable approach for in silico drug screening and quantitative structure-activity relationships.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.