Abstract
We consider the augmented Lagrangian method (ALM) as a solver for the fused lasso signal approximator (FLSA) problem. The ALM is a dual method in which squares of the constraint functions are added as penalties to the Lagrangian. In order to apply this method to FLSA, two types of auxiliary variables are introduced to transform the original unconstrained minimization problem into a linearly constrained minimization problem. Each updating in this iterative algorithm consists of just a simple one-dimensional convex programming problem, with closed form solution in many cases. While the existing literature mostly focused on the quadratic loss function, our algorithm can be easily implemented for general convex loss. We also provide some convergence analysis of the algorithm. Finally, the method is illustrated with some simulation datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.