Abstract

Noninvasive visualization and investigation of interactions among proteins, biomolecules, and enzymes in living cells is an important goal for biologists, and fluorescence probes are powerful tools for this purpose. Because many target molecules are present in only trace amounts, high sensitivity is very important, and it is common to improve the sensitivity of fluorescence probes by focusing on high reaction velocity, K(d). (Gee, K. R.; Archer, E. A.; Lapham, L. A.; Leonard, M. E.; Zhou, Z.; Bingham, J.; Diwu, Z. Bioorg. Med. Chem. Lett. 2000, 10, 1515-1518.) So far, we have designed and synthesized various highly sensitive fluorescence probes based on the above concepts. (Gabe, Y.; Urano, Y.; Kikuchi, K.; Kojima, H.; Nagano, T. J. Am. Chem. Soc. 2004, 126, 3357-3367. Komatsu, K.; Urano, Y.; Kojima, H.; Nagano, T. J. Am. Chem. Soc. 2007, 129, 13447-13454.) Nevertheless, they were sometimes insufficiently sensitive to detect biomolecules in living cells, despite high chemical sensitivity in cuvette. In this report, we suggest a new approach to increase the sensitivity of fluorescence probes, focusing on their intracellular retention. Since calcein is well-retained, we investigated its structural, chemical, and optical characteristics and found that the iminodiacetic acid group (IAG) is a key structure for the intracellular retention. We next designed and synthesized novel fluorescence probes containing IAGs. They showed superior intracellular retention, making it possible to visualize low concentrations of target molecules that would be difficult to observe with conventional probes and permitting long-term observation in living cells. Improvement of intracellular retention of fluorescence probes holds great promise as a strategy for developing a wide range of highly sensitive probes for studies on various biological phenomena.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.