Abstract
Biomimetic flexible electronics for E-skin have received increasing attention, due to their ability to sense various movements. However, the development of smart skin-mimic material remains a challenge. Here, a simple and effective approach is reported to fabricate super-tough, stretchable, and self-healing conductive hydrogel consisting of polyvinyl alcohol (PVA), Ti3 C2 Tx MXene nanosheets, and polypyrrole (PPy) (PMP hydrogel). The MXene nanosheets and Fe3+ serve as multifunctional cross-linkers and effective stress transfer centers, to facilitate a considerable high conductivity, super toughness, and ultra-high stretchability (elongation up to 4300%) for the PMP hydrogel with. The hydrogels also exhibit rapid self-healing and repeatable self-adhesive capacity because of the presence of dynamic borate ester bond. The flexible capacitive strain sensor made by PMP hydrogel shows a relatively broad range of strain sensing (up to 400%), with a self-healing feature. The sensor can precisely monitor various human physiological signals, including joint movements, facial expressions, and pulse waves. The PMP hydrogel-based supercapacitor is demonstrated with a high capacitance retention of ≈92.83% and a coulombic efficiency of ≈100%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.