Abstract

N-[(2-Hydroxyl)-propyl-3-trimethyl ammonium] chitosan chloride (HTCC) was synthesized through nucleophilic substitution of 2,3-epoxypropyltrimethyl ammonium chloride (EPTAC) onto chitosan using ionic liquid of 1-allyl-3-methylimidazole chloride (AmimCl) as a homogeneous and green reaction media. The chemical structure of HTCC was confirmed by FTIR, 1H NMR and 13C NMR. The FTIR peak intensity of amino group at 1595cm−1 decreased and that of −N(CH3)3+ at 1475cm−1 increased with the increase of reaction time, confirming the substitution of EPTAC on CS. The degree of substitutions (DS) were calculated from the integral area of 1H NMR, and the optimum reaction condition was obtained, namely, reaction time of 8h, temperature of 80°C and nEPTAC/n−NH2 of 3/1. The degree of crystallinity and thermal properties of HTCC were characterized by XRD, TG, DSC, and DMA methods. Data from XRD, TG, DSC and DMA show that the degree of crystallinity, thermal stability, as well as glass transition temperature of HTCC decreased with the increase of DS. The reaction mechanism of chitosan with EPTAC in AmimCl was elucidated by performing density functional theory (DFT) calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.