Abstract

The inverse Langevin function cannot be represented in an explicit form and requires an approximation by a series, a non-rational or a rational function as for example by a Pade approximation. In the current paper, an analytical method based on the Pade technique and the multiple point interpolation is presented for the inverse Langevin function. Thus, a new simple and accurate approximation of the inverse Langevin function is obtained. It might be advantageous, for example, for non-Gaussian statistical theory of rubber elasticity where the inverse Langevin function plays an important role.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.