Abstract

For the first time, a simple analytical model in the form of explicit formulas was derived for on-silicon-chip inductors. This analytical model can accurately calculate self-resonance frequencies (fSR) in TEM mode and eddy current mode corresponding to very high and very low substrate resistivities (ρSi). Furthermore, this derived model can predict and explain the interesting result that fSR keeps nearly a constant independent of ρSi in TEM and eddy current modes but is critically determined by the inductance and parasitic capacitances. The simple model is useful in on-silicon-chip inductor design for increasing fSR under specified inductance target for broadband RF circuit design and applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.