Abstract

A simple analytical approximation is proposed in this paper to calculate the crack tip opening displacement under general random variable amplitude loadings. This approximation is based on a modified Dugdale model for cyclic loadings. The discussion is first given under constant amplitude loading and is extended to several simple cases under variable amplitude loadings. Following this, a general algorithm is proposed under general random variable loadings. Numerical examples are verified with finite element simulations. Following this, hardening effect is included by including a hardening correction function. The proposed analytical approximation is very efficient compared to the direct finite element simulation. The solution can be used for detailed fatigue crack growth analysis under random variable amplitude loadings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.