Abstract

As a branch of auxetics, the re-entrant hexagonal honeycomb has many superior mechanical performances. However, most research focused on two-dimensional (2D) re-entrant structures or three-dimensional (3D) structures without high compressibility. The energy absorption capacity of such structures is deficient for practical applications. Therefore, it is important to investigate the 3D re-entrant honeycomb structures which can sustain large deformation in order to make the most use of the materials. In this work, a simple 3D re-entrant unit cell is designed, manufactured and examined. The influence of geometric parameters on the deformation mode and energy absorption capacity is investigated numerically. The experimental results are in good agreement with the finite element prediction. The proposed 3D re-entrant auxetic metamaterial not only possesses a greater bearing capacity but also presents a stable compression deformation. The structure exhibits a desirable energy absorption behavior, including obvious auxetic behavior and a long stress plateau. By adjusting the geometrical parameters of the structure, the performances of energy absorption and compression stiffness can be improved. These findings provide a new idea to design 3D auxetic metamaterials and promote their utilization in protective structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call