Abstract

Supergranule revolution rate and lifetime can be measured by cross-correlating pairs of Doppler-velocity maps that have been filtered (by Hathaway's method) to remove other flows. As a conceptual framework for that analysis, this exploratory paper develops an idealized, phenomenological model of supergranule flows. Assumptions made about supergranule cells on the Sun's photosphere include: random location in space and time, and horizontal flows with circular symmetry and having a Simon–Weiss velocity function. Each supergranule is stable for a time, dies, and after a while, a daughter is born at a nearby position determined by a random walk. The effect on the cross-correlations of changing projection onto the line-of-sight as the Sun rotates is analyzed. The total cross-correlation for strips of constant latitude depends on two generic, slowly-varying projection functions. Effects of differential rotation and time-evolution are also considered. GONG observations of June 1994 show systematic variations in the width and shape of correlation peaks with latitude; our model suggests that projection effects alone can account for these without invoking any intrinsic variations of the supergranules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.